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Abstract

The present article gives a method for evaluating or identifying the linear viscous damping ratio of single-
degree-of-freedom systems, which are excited from its base. Unlike most of the existing methods that are
based on transient responses and the assumption of small damping, the present method does not require the
system to have a small damping. The novel method is derived using the input-forcing function as the
reference signal, and the corresponding system responds as the modulator. However, in order to get the
phase-lag signal without measuring the amplitudes of input and response, a second reference signal has
been proposed in the present report. That is, the input-forcing function with 90� shift in its phase is taken as
the second reference. The two modulated signals are then independently split into two parts. The part,
which is time-invariant, is the one containing the system damping. It has been shown by the numerical
simulations that the given method identifies the damping ratio with a good accuracy if the excitation
frequency is tuned to the phase-sensitive region. Finally, the experimental study in the present report also
further substantiates the applicability and validity of the method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Friction or retarding force, damping as well as energy dissipation have been noticed long before
4 B.C. [1]. However, 2000 years later, topics related to damping, damping models, and damping
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a0 dc of gðtÞ

b0 dc of ~gðtÞ
c damping
f s signal sampling frequency in Hz
gðtÞ modulated response in time domain ¼

uðtÞ zðtÞ
~gðtÞ the second modulated time response
G0 measured tanf
k stiffness
m mass
n number of points of a sampled signal
Q quality factor
r frequency ratio ¼ O=on

rd frequency ratio ¼ O=od

rz amplitude transmissibility ¼ Z=U

r0 frequency ratio where f ¼ p=2
Dts sampling resolution ¼ 1=f s

uðtÞ base excitation
U amplitude of base excitation
zðtÞ system responses in time domain
Z amplitude of the system response
f lag angle due to system damping
on natural frequency in rad/s
O excitation frequency in rad/s
O0 excitation frequency at f ¼ p=2
z damping ratio
B̂ estimated damping ratio
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control, etc. are still important and relevant to industrial practices. In addition, as it is well
known, damping or friction actually induced vibration and a lot of nonlinear dynamic phenomena
[2]. Moreover, due to the increasing complexity of modern technology, a method that can
accurately represent the damping of a system is essential. In fact, it was Rayleigh [3] who was the
first to precisely notice that the dissipative energy resulting from damping is proportional both to
mass and velocity of a system. The energy dissipative function he proposed in the 19th century, is
still commonly adopted in dynamic analysis today.

Unlike mass and stiffness properties, which can be directly measured or analytically computed
by numerical models such as the finite element, the damping of a system is extremely difficult to
obtain. Generally, the damping characteristics, no matter whether they are internal (e.g., material,
micro-structural effects, friction, etc.) or external (e.g., boundary, fluid contact, fluid/structure
interaction, etc.), can be revealed only by experimental measurement. Therefore, reasonably
accurate identification methods that correlate the analytical model with measured data are
important and necessary. In fact, there exist many models for various fields. For example, Ibrahim
[4], Armstrong-Helouvry et al. [5] provided detailed surveys from the viewpoint of models, control
and compensation. However, most of the given mathematical models are usually too complicated
to be applied in tests. In addition, damping was clearly not as simple as the commonly used
models would imply.

During the last couple of decades, research interests in damping or friction have been
mostly focused in multi-degree-of-freedom (mdof) or nonlinear systems. For example, the
reports from Refs. [6–8] provided several useful damping models for mdof based on non-
negative energy dissipation functions, e.g., an exponentially decaying function. And the damping
behavior was assumed to follow that exponential relaxation function, which is controlled
by a so-called relaxation time constant. The main issue was then concentrated to fit the function
by tuning the constant with experimental measurements. The results showed the models are
good for both viscously and non-viscously damped systems. However, most reports [6–9] still
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limit the system damping to be small in order to assure the accuracy. Or, the methods may lack
uniqueness [10].

In order to estimate or measure the system damping (or damping ratio), several means have
been developed. Some are documented in Refs. [9,11–13] for various systems. Essentially, all
methods are theoretically based on the fact that the system damping has the property of
decreasing the response amplitude. Therefore, one is to measure the damping ratio from the
transient response and when the system is in free vibration. These methods include the method of
logarithmic decrement, the quality factor or Q-factor method, curve fitting methods, etc. Again,
these methods are based on the small damping assumption. Otherwise, the measurement error
would be large.

Unlike those techniques only valid under the assumption of small damping, the recently
proposed method by Li [14] is very accurate. And, the method derived in Ref. [14] only valid for
systems that are directly excited by forcing functions. However, it may have circumstances that
are impossible to apply forcing function directly on to the system during experiments. For
example, the cantilever in front of a probe of an atomic force microscope can be modeled only by
a base-excited system. And, it may be difficult to apply an external force on to the cantilever
directly. Motivated by this, a novel idea is given in the present paper.
2. Derivation of the method

Refer to Fig. 1 for the responses of a linear sdof system, which is excited by uðtÞ from its base
can be represented by

m€z þ cð_z � _uÞ þ kðz � uÞ ¼ 0; ð1Þ

where m; c; and k are the equivalent mass, linear damping and stiffness of the system, respectively.
If the base excitation satisfies

uðtÞ ¼ UeiOt ð2Þ

in which i ¼
ffiffiffiffiffiffiffi
�1

p
; the steady-state solution of the mass can be obtained in terms of the complex

form

zðtÞ ¼
1þ ið2rzÞ

ð1� r2Þ þ ið2rzÞ

� �
UeiOt ¼ ZeiðOt�fÞ ð3Þ

with

Z ¼ rZ � U ð4Þ

and

tanf ¼
2zr3

ð1� r2Þ þ ð2rzÞ2
: ð5Þ

The symbols in Eq. (3) are defined in terms of the system parameters

B ¼
c

2
ffiffiffiffiffiffiffi
mk

p ; r ¼
O
on

and o2
n ¼

k

m
: ð6Þ



ARTICLE IN PRESS

u(t)

z(t)

k

m

c

Fig. 1. Schematic diagram of a base-excited system.
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Note, rZ in Eq. (4) is called the transmissibility to denote the portion of the input amplitude that
has been transmitted to the output. In fact, this transmissibility can be defined from Eq. (3) and
has the form

rZ ¼
1þ ð2zrÞ2

ð1� r2Þ2 þ ð2zrÞ2

� �1=2

: ð7Þ

Without loss of the generality, in case the excitation is harmonic in an experiment, or

uðtÞ ¼ U sinðOtÞ; ð8Þ

then one has no difficulty to express zðtÞ as

zðtÞ ¼ Z sinðOt � fÞ ð9Þ

from Eq. (3). Applying the concept similar to that given in Ref. [14], one is able to define a
response modulation function

gðtÞ ¼ uðtÞ � zðtÞ ¼ U sinðOtÞ � Z sinðOt � fÞ; ð10Þ

in which zðtÞ is taken as the modulator and uðtÞ as the reference. Clearly, one may also
equivalently write Eq. (10) as

gðtÞ ¼
rZ � U2

2
½cosf� cosð2Ot � fÞ
 ð11Þ

if the transmissibility is known. Notice that the first term of Eq. (11) is time-invariant, while the
second has the frequency of 2O: In order to get the first term, one may simply design a low-pass
filter (LPF) to get rid of the signal that has frequency of 2O in a vibration test. Thus, one has the
time-invariant part

kgðtÞkLPF ¼
rZ � U2

2
cosf; ð12Þ

where k . . . k denotes the filtered value. Equivalently, for the discrete signals, one has

a0 ¼ kgðtÞkLPF ffi
1

n

Xn

i¼1

gði � DtsÞ ð13Þ
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with Dts ¼ ð1=f sÞ and f s is the sampling frequency and DtsoT=2; where T is the period of the
excitation. Readers may refer to Ref. [14] for the detail discussion in this equivalence.

In the mean time, it is also possible to consider the input excitation with a T=4 or p=2 phase
shift as the second reference of the response zðtÞ: By doing so, one can define the second response
modulation as

~gðtÞ ¼ uðt � T=4Þ � zðtÞ ¼
rZ � U2

2
½sinf� sinð2Ot � fÞ
; ð14Þ

and

b0 ¼ k ~gðtÞkLPF ¼
rZ � U2

2
sinf ð15Þ

following the same procedure as Eq. (12). Therefore, one is able to evaluate tanf from the two
filtered response modulations, or

G0 ¼
b0

a0
¼

k ~gðtÞkLPF

kgðtÞkLPF

¼
2zr3

ð1� r2Þ þ ð2rzÞ2
: ð16Þ

That is, Eq. (16) just takes the ratio of the two filtered signals to approximate tanf of Eq. (5). Fig. 2
depicts the schematic diagram for the electronic set-up of the idea. Note also that if r approaches 1.0
and z is fixed and small, then G0 ffi Q; i.e., limr!1 G0 ¼ Q; where Q is the quality factor of the
system. However, if z increases or r has a value other than 1.0, G0 may have values far away from Q:

Examining Eq. (16), the transmissibility need not be known beforehand as it can cancel out
each other in the equation. Besides, G0 strongly depends only on the excitation frequency, which
appears in r of the equation, but not on of the amplitude of its base excitation. As the
consequence, the amplitude of the base excitation can be set just large enough to get the good
quality responses during experiments. However, the merit of Eq. (15), which is with U2; is to
minimize the measurement error when f is away from p=2 in which sinf alone is small and
difficult to measure correctly.

Note that the signs of kgðtÞkLPF ða0Þ and k ~gðtÞkLPF ðb0Þ are also important indices to delve into
the true system damping. In case the experiment is carried out and gets fop=2; then both a0 and
b0 shall be positive. On the other hand, the sign of the former together with G0 should change to
negative while the latter keeps its sign positive if f4p=2: Otherwise, the error of evaluation is
large, or the evaluated damping ratio cannot be trusted. Refer to Fig. 3 for this argument and the
sign change of G0:
g(t)
phase 
shifter

z(t)

LPF

LPF

 tan

u(t)

. .

~

g(t)
φ

Fig. 2. Block diagram of electronic setup to get tanf from measurement.
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Comparing Eq. (16) with (12), it is quite clear that the most sensitive regions for amplitudes and
phases are not the same if damping ratios are not small. The maximum value for rz always appears
at ro1:0; while that of phases appears at the condition which satisfies the denominator of G0

equal to zero or a small value. That is from Eq. (16), if the system damping ratio z satisfies

B0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p

2r
or r0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z2

p ; ð17Þ

then G0 has the maximum value. The subscripts of z0 and r0 are to denote the location that the
phase lag is right at p=2: Certainly, condition (17) is true only when cases r41:0: Besides, for every
zo0:5; there exists a corresponding r such that Eq. (17) being satisfied. In case condition (17)
holds, then G0 reaches its maximum value and the phase lag f ¼ p=2; as shown in Fig. 3 by the
heavy dotted line. Therefore, the location where the phase angle is most sensitive depends on both
the excitation frequency and the system damping ratio. However, when the system damping is
very small, this most-sensitive location is just slightly larger then r ¼ 1:0; or r0 � 1:0:
Furthermore, if z ¼ 0:5; r ! 1: Or, there exists no possible phase lag f ¼ p=2:

Rearranging Eq. (16) and solving for z; one is able to write the damping ratio as

B̂ ¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � 4G2

0ð1� r2Þ

q
4rG0

; ð18Þ

in which the over-hat denotes the identified value. Since the damping ratio is real, the value
computed from the square root must be real. Thus, the expression

r2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p 4G0 if ro1:0;

r2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p oG0 if r41:0 ð19Þ
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must be held in order to keep z real-valued. The feasible combinations for ðr;G0Þ are shown in
Fig. 4. Meanwhile, it is also intrusive to keep only the positive root for the system damping ratio
according to its definition.
3. Numerical verifications

In order to verify the validity of the damping identification method mentioned, numerical
simulations have been conducted. Referring to Fig. 4, the frequency of base excitations should be
selected close to the location where condition (17) holds or in the neighborhood of it so that better
quality of the damping signals can be obtained. However, in order to show the validity of the
present method, a wide range of excitation frequencies have been thoroughly studied.

For the first example, the parameters on ¼ 40p (or 20Hz) and the sample frequency 500Hz
are used during the simulations while the amplitude of excitation is set to be unity. In addition,
Eq. (13) is applied to compute the numerical average values, instead of a low-pass filter. The
simulation results are shown in Fig. 5(a) for z ¼ 0:01; 0.05 and 0.1, respectively, which are
considered as small damping. As one can read from the left corner of the figure, the sign check
given in the last section provides a good tool to screen out negative damping ratios. However,
Fig. 5(a) also indicates that the present method can correctly identify the system damping ratio
only in the vicinity of r � 1: Other than this region, a large error has been noticed. The reason is
quite clear. The energy transmitted from the base to the mass mainly through the mechanism of
spring and mass effects in the region away from damping-sensitive region if damping is small. As a
consequence, the phase-lag signal is relatively small, even negligible, comparing to its counter
parts. Taking z ¼ 0:05 for example, the phase sensitivity, which is represented by tanf (or G0)
from Eq. (5), is less than 1.0 except at a small range near r ¼ 1 (r0 ¼ 1:005), refer to Fig. 5(b).
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Fig. 5. Damping identification: numerical results for typical systems under base excitation.
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Actually, the present method identifies the system damping correctly in the damping-sensitive
region.

Fig. 6 shows the sign change of a0; b0 and G0 for z ¼ 0:1 for various r’s. It reveals that the part
containing cosf decreases rapidly from positive to negative if r increases from a small value across
the phase-sensitive region, while b0 keeps its sign unchanged. However, the value of the latter also
monotonically increases then decreases after f ¼ p=2: These properties can be used to locate the
bandwidth of the phase-sensitive region. Note also that the bandwidth of this region is inversely
proportional to z: A smaller z results in a narrower bandwidth, which is defined as the frequency
differences between G0 ¼ �1:0 (Fig. 7), and a steeper slope of a0 at the point (shown by ‘O’ in
Fig. 6) it changes the sign. Thus, locating the phase-sensitive region could be crucial if z is small.
4. Experiments

In order to evaluate the damping ratio of a damped system from an experiment using the
present method, one generally applies an excitation with the frequency right at one of the damped
natural frequencies ðodÞ since on may be not yet known. Thus, the practical frequency of the
applied excitation is at

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
or r ¼ O=on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð20Þ

corresponding to a sdof system. Based on the conclusion given in the numerical simulation
example, the oscillation frequency selected in accordance to Eq. (20) is certainly lower than the
most sensitive range. However, it guarantees a high sensitivity in amplitudes. In addition this
damped natural frequency can be easily found from many traditional experimental methods, like
applying an impulse force through a hammer, or a sweep sine forcing function, etc.

Assuming that z at od and O0 are equal, it is possible to solve on and z from Eqs. (17) and (20)
from the measured O and od ; i.e.,

B̂ ¼
5

8
�

1

8rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 9r2d

q� �0:5

ð21Þ
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and

ôn ¼ od �
3r2d
2

þ
rd

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 9r2d

q� �0:5

ð22Þ

where rd ¼ O0=od ; where O0 denotes the excitation frequency right at f ¼ p=2: In general O0 can
be determined by evaluating a0 through an experiment in such a way that letting ja0jo�; where � is
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an arbitrarily small and allowable tolerance. In addition, after examining Eqs. (17) and (20), one
can easily conclude that

odponpO0; ð23Þ

and the equality holds only when z ¼ 0; which is impossible for a practical system.
The experiment carried out to further verify the method is a cantilever beam system. The

schematic diagram is shown in Fig. 8, in which a steel cantilever of dimension 1:7T � 20:2W �

240L mm (ca. 64.3 g) is directly mounted on to a shaker. Theoretically, the beam has the
natural frequency at ca. 11.25Hz. However, experimentally the damped natural frequency ðodÞ of
the beam is found to be 12:695� 0:005Hz with 90% confidence level, and Q � 29 when it
oscillates in air.

During the experiments, the sampling frequency f s has been set to 500Hz. Sinusoidal
excitations of various frequencies were applied from the controller to the shaker and detected by
sensor 1 (S1) mounted on the base of the cantilever; see Fig. 8 for the detail set up. The system
responses are then detected by sensor 2 (S2) which is located at the tip of the beam. Fig. 9 shows
typical responses in the time and frequency domains. The result verified the validity of Eqs. (11)
and (14) that predict the modulations containing both the time-invariant and signals of 2O:

Collecting a0 and b0 of the beam for different excitation frequencies in the neighborhood of
r ¼ 1; the results are plotted in Fig. 10. Each of data points shown in Fig. 10 is based on the
average of 10 repeated measurements. The plot clearly indicates the sign change of a0 that is
predicted by the numerical simulation. Thus, using the idea of sign change on a0 in Fig. 10, one is
able to locate the approximate frequency that corresponds to f ¼ p=2: In fact, that excitation
frequency is O0 in Eq. (22). Thus, one can obtain O0 � 12:73Hz from the experimental data by
curve-fitting, refer to Fig. 10. The measured system damping ratio as well as the natural frequency
can be then correspondingly computed by applying Eqs. (21) and (22), respectively. The results
are tabulated in Table 1. Table 1 also shows the results that in case the evaluated O0 slightly
deviates from 12.73Hz. As it has been shown in the table, small deviation on O0 causes relatively
large change in z: Therefore, carefully measuring and lock-in the location of O0 is required in
order to get a more accurate damping ratio. In the meantime, the error of O0 in the positive side or
away from od tends to identify a larger damping ratio. Actually, this result has been implicitly
indicated in Eq. (23).

In order to further delve into the applicability of the present method, the experimental results
from 12.5 to 13.0Hz are tabulated in Table 2. Based on the conclusion from Table 1 that the
natural frequency for the cantilever is 12.702Hz ðO0 ¼ 12:73Hz), they are all in the vicinity of
f ¼ p=2: Table 2 shows that the damping ratios evaluated by Eq. (18) are between 2.8% and
5.4%, and with an average of 4.2%. These values are somewhat different from that of Table 1,
which has 3.3% (2.2–4.2%). In addition, the difference between the two damping ratios of the
excitation frequencies (12.7 and 12.8Hz) just next to the sign change of G0 tends to be larger than
others. These two frequency locations are supposed to be the most damping-sensitive. However,
as far as the experimental results can conclude that they may have larger error. The main reason
stems from the numerical manipulation of G0 in the present experiments. Since the denominator
ða0Þ of G0 is very close to zero, a small change in a0 causes large variation in G0: In case the
experiment was carried out by directly implementing through the hardware given in Fig. 2, more
accurate results would be expected.
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5. Conclusions

A novel evaluation method for the linear viscous damping of systems under base excitation is
presented in this paper. The method is derived using the input-forcing function as the reference
signal, and the system responses as the modulator. However, in order to get the phase-lag
signal without measuring the amplitudes of the input and response, a second reference
signal has been proposed in the present report. That is, the input forcing function shifted
with 90� in its phase is taken as the second reference. The modulated signals are then filtered
into two parts. The first part is time-invariant and contains information of the system. The
second part relates to signals with high frequency. Therefore, the part with high frequency
may be screened out by using a low-pass filter or by averaging a segment of the modulated
signals. In addition to the derivation of the method, the region where a better quality of
damping signal occurs is also discussed. Unlike the amplitude, which has the maximum
always at its resonance, the phase-sensitive region is at slightly larger than the resonance
depending on the system damping. Finally, the validity of the method is verified by
numerical simulations. It has been shown that the given method identifies the damping
ratio with good accuracy if the excitation frequency is tuned to inside the phase-sensitive
region. Moreover, the method is also verified by the experimental study of a cantilever.
Essentially, the experimental results substantiate the validity and applicability of the present
method.
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Table 1

Comparisons for experimentally identified results

Medium O0 (Hz) on z

Eq. (24) Theoreticala Eq. (23)

ôn (Hz) on;t (Hz) B̂2 (%)

Air 12.73 12.702 3.3

12.71 12.698 11.25 2.2

12.75 12.706 4.2

aon;t ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; k ¼ 3EI=l3:

Table 2

Evaluated z for the cantilever at 12.5–13Hz

r O (Hz) Sign of G0 Eq. (18) 0:5=Q

(O=ôn) B̂1 (%) B̂3 (%)

0.984 12.5 + 3.4 —

0.992 12.6 + 2.8 —

0.9998 12.7 + 3.8 1.7

1.008 12.8 � 5.3 —

1.016 12.9 � 5.4 —

1.024 13.0 � 4.2 —
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